extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×Dic3)⋊1C22 = D6⋊4D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):1C2^2 | 288,570 |
(C6×Dic3)⋊2C22 = D6⋊5D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):2C2^2 | 288,571 |
(C6×Dic3)⋊3C22 = C62⋊5D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):3C2^2 | 288,625 |
(C6×Dic3)⋊4C22 = C62⋊8D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 24 | | (C6xDic3):4C2^2 | 288,629 |
(C6×Dic3)⋊5C22 = S3×D4⋊2S3 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | 8- | (C6xDic3):5C2^2 | 288,959 |
(C6×Dic3)⋊6C22 = Dic6⋊12D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 24 | 8+ | (C6xDic3):6C2^2 | 288,960 |
(C6×Dic3)⋊7C22 = D12⋊13D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 24 | 8+ | (C6xDic3):7C2^2 | 288,962 |
(C6×Dic3)⋊8C22 = C2×S3×C3⋊D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):8C2^2 | 288,976 |
(C6×Dic3)⋊9C22 = C2×Dic3⋊D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 24 | | (C6xDic3):9C2^2 | 288,977 |
(C6×Dic3)⋊10C22 = C32⋊2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 24 | 4 | (C6xDic3):10C2^2 | 288,978 |
(C6×Dic3)⋊11C22 = S3×D6⋊C4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):11C2^2 | 288,568 |
(C6×Dic3)⋊12C22 = C62.91C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):12C2^2 | 288,569 |
(C6×Dic3)⋊13C22 = S3×C6.D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):13C2^2 | 288,616 |
(C6×Dic3)⋊14C22 = C62.116C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 24 | | (C6xDic3):14C2^2 | 288,622 |
(C6×Dic3)⋊15C22 = C62⋊4D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):15C2^2 | 288,624 |
(C6×Dic3)⋊16C22 = C62.125C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):16C2^2 | 288,631 |
(C6×Dic3)⋊17C22 = C3×D6⋊D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):17C2^2 | 288,653 |
(C6×Dic3)⋊18C22 = C3×C23⋊2D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):18C2^2 | 288,708 |
(C6×Dic3)⋊19C22 = C3×C24⋊4S3 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 24 | | (C6xDic3):19C2^2 | 288,724 |
(C6×Dic3)⋊20C22 = C3×D4⋊6D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 24 | 4 | (C6xDic3):20C2^2 | 288,994 |
(C6×Dic3)⋊21C22 = C2×D6⋊Dic3 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3):21C2^2 | 288,608 |
(C6×Dic3)⋊22C22 = C2×C6.D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):22C2^2 | 288,611 |
(C6×Dic3)⋊23C22 = C3×S3×C22⋊C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):23C2^2 | 288,651 |
(C6×Dic3)⋊24C22 = C6×D6⋊C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3):24C2^2 | 288,698 |
(C6×Dic3)⋊25C22 = C6×C6.D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):25C2^2 | 288,723 |
(C6×Dic3)⋊26C22 = C2×S3×D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):26C2^2 | 288,951 |
(C6×Dic3)⋊27C22 = C22×C3⋊D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):27C2^2 | 288,974 |
(C6×Dic3)⋊28C22 = S3×C4○D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | 4 | (C6xDic3):28C2^2 | 288,953 |
(C6×Dic3)⋊29C22 = C2×D6.3D6 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):29C2^2 | 288,970 |
(C6×Dic3)⋊30C22 = S32×C2×C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):30C2^2 | 288,950 |
(C6×Dic3)⋊31C22 = C22×S3×Dic3 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3):31C2^2 | 288,969 |
(C6×Dic3)⋊32C22 = C22×C6.D6 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):32C2^2 | 288,972 |
(C6×Dic3)⋊33C22 = S3×C6×D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):33C2^2 | 288,992 |
(C6×Dic3)⋊34C22 = C6×D4⋊2S3 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):34C2^2 | 288,993 |
(C6×Dic3)⋊35C22 = C3×S3×C4○D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | 4 | (C6xDic3):35C2^2 | 288,998 |
(C6×Dic3)⋊36C22 = C2×C6×C3⋊D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3):36C2^2 | 288,1002 |
(C6×Dic3)⋊37C22 = S3×C22×C12 | φ: trivial image | 96 | | (C6xDic3):37C2^2 | 288,989 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×Dic3).1C22 = Dic3.Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).1C2^2 | 288,493 |
(C6×Dic3).2C22 = C62.16C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).2C2^2 | 288,494 |
(C6×Dic3).3C22 = C62.18C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).3C2^2 | 288,496 |
(C6×Dic3).4C22 = Dic3.D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).4C2^2 | 288,500 |
(C6×Dic3).5C22 = C62.23C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).5C2^2 | 288,501 |
(C6×Dic3).6C22 = D6⋊7Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).6C2^2 | 288,505 |
(C6×Dic3).7C22 = C62.28C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).7C2^2 | 288,506 |
(C6×Dic3).8C22 = C62.29C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).8C2^2 | 288,507 |
(C6×Dic3).9C22 = C62.32C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).9C2^2 | 288,510 |
(C6×Dic3).10C22 = C62.38C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).10C2^2 | 288,516 |
(C6×Dic3).11C22 = C62.39C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).11C2^2 | 288,517 |
(C6×Dic3).12C22 = C62.42C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).12C2^2 | 288,520 |
(C6×Dic3).13C22 = D6.D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).13C2^2 | 288,538 |
(C6×Dic3).14C22 = D6⋊4Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).14C2^2 | 288,547 |
(C6×Dic3).15C22 = D6⋊D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).15C2^2 | 288,554 |
(C6×Dic3).16C22 = C12⋊7D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).16C2^2 | 288,557 |
(C6×Dic3).17C22 = C62.82C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).17C2^2 | 288,560 |
(C6×Dic3).18C22 = C62.85C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).18C2^2 | 288,563 |
(C6×Dic3).19C22 = C12⋊2D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).19C2^2 | 288,564 |
(C6×Dic3).20C22 = C12⋊3Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).20C2^2 | 288,566 |
(C6×Dic3).21C22 = C12⋊Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).21C2^2 | 288,567 |
(C6×Dic3).22C22 = C62.95C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).22C2^2 | 288,601 |
(C6×Dic3).23C22 = C62.98C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).23C2^2 | 288,604 |
(C6×Dic3).24C22 = C62.57D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).24C2^2 | 288,610 |
(C6×Dic3).25C22 = C62.60D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).25C2^2 | 288,614 |
(C6×Dic3).26C22 = C62.113C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).26C2^2 | 288,619 |
(C6×Dic3).27C22 = C62.117C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).27C2^2 | 288,623 |
(C6×Dic3).28C22 = C62⋊4Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).28C2^2 | 288,630 |
(C6×Dic3).29C22 = Dic3⋊5Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).29C2^2 | 288,485 |
(C6×Dic3).30C22 = C62.8C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).30C2^2 | 288,486 |
(C6×Dic3).31C22 = C62.9C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).31C2^2 | 288,487 |
(C6×Dic3).32C22 = C62.10C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).32C2^2 | 288,488 |
(C6×Dic3).33C22 = S3×Dic3⋊C4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).33C2^2 | 288,524 |
(C6×Dic3).34C22 = C62.53C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).34C2^2 | 288,531 |
(C6×Dic3).35C22 = Dic3⋊D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).35C2^2 | 288,534 |
(C6×Dic3).36C22 = D6⋊1Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).36C2^2 | 288,535 |
(C6×Dic3).37C22 = C62.58C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).37C2^2 | 288,536 |
(C6×Dic3).38C22 = D6⋊2Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).38C2^2 | 288,541 |
(C6×Dic3).39C22 = C62.65C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).39C2^2 | 288,543 |
(C6×Dic3).40C22 = C62.100C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).40C2^2 | 288,606 |
(C6×Dic3).41C22 = C62.115C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).41C2^2 | 288,621 |
(C6×Dic3).42C22 = C62.121C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).42C2^2 | 288,627 |
(C6×Dic3).43C22 = C2×S3×Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).43C2^2 | 288,942 |
(C6×Dic3).44C22 = C2×D12⋊S3 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).44C2^2 | 288,944 |
(C6×Dic3).45C22 = D12.33D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | 4 | (C6xDic3).45C2^2 | 288,945 |
(C6×Dic3).46C22 = C2×Dic3.D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).46C2^2 | 288,947 |
(C6×Dic3).47C22 = C2×D6.6D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).47C2^2 | 288,949 |
(C6×Dic3).48C22 = Dic6.24D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | 8- | (C6xDic3).48C2^2 | 288,957 |
(C6×Dic3).49C22 = C2×D6.4D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).49C2^2 | 288,971 |
(C6×Dic3).50C22 = C62.6C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).50C2^2 | 288,484 |
(C6×Dic3).51C22 = C62.11C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).51C2^2 | 288,489 |
(C6×Dic3).52C22 = C62.13C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).52C2^2 | 288,491 |
(C6×Dic3).53C22 = C62.17C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).53C2^2 | 288,495 |
(C6×Dic3).54C22 = C62.19C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).54C2^2 | 288,497 |
(C6×Dic3).55C22 = C62.24C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).55C2^2 | 288,502 |
(C6×Dic3).56C22 = C62.31C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).56C2^2 | 288,509 |
(C6×Dic3).57C22 = C62.47C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).57C2^2 | 288,525 |
(C6×Dic3).58C22 = C62.48C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).58C2^2 | 288,526 |
(C6×Dic3).59C22 = C62.51C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).59C2^2 | 288,529 |
(C6×Dic3).60C22 = C62.54C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).60C2^2 | 288,532 |
(C6×Dic3).61C22 = C62.55C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).61C2^2 | 288,533 |
(C6×Dic3).62C22 = S3×C4⋊Dic3 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).62C2^2 | 288,537 |
(C6×Dic3).63C22 = D6.9D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).63C2^2 | 288,539 |
(C6×Dic3).64C22 = Dic3⋊5D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).64C2^2 | 288,542 |
(C6×Dic3).65C22 = D12⋊Dic3 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).65C2^2 | 288,546 |
(C6×Dic3).66C22 = C62.70C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).66C2^2 | 288,548 |
(C6×Dic3).67C22 = C62.72C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).67C2^2 | 288,550 |
(C6×Dic3).68C22 = C62.74C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).68C2^2 | 288,552 |
(C6×Dic3).69C22 = Dic3⋊3D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).69C2^2 | 288,558 |
(C6×Dic3).70C22 = C62.83C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).70C2^2 | 288,561 |
(C6×Dic3).71C22 = C62.94C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).71C2^2 | 288,600 |
(C6×Dic3).72C22 = C62.99C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).72C2^2 | 288,605 |
(C6×Dic3).73C22 = C62.101C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).73C2^2 | 288,607 |
(C6×Dic3).74C22 = D6⋊Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).74C2^2 | 288,499 |
(C6×Dic3).75C22 = D6⋊6Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).75C2^2 | 288,504 |
(C6×Dic3).76C22 = C62.33C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).76C2^2 | 288,511 |
(C6×Dic3).77C22 = C62.35C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).77C2^2 | 288,513 |
(C6×Dic3).78C22 = C62.40C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).78C2^2 | 288,518 |
(C6×Dic3).79C22 = C12.30D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).79C2^2 | 288,519 |
(C6×Dic3).80C22 = C62.43C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).80C2^2 | 288,521 |
(C6×Dic3).81C22 = D6⋊3Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).81C2^2 | 288,544 |
(C6×Dic3).82C22 = C62.67C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).82C2^2 | 288,545 |
(C6×Dic3).83C22 = C62.77C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).83C2^2 | 288,555 |
(C6×Dic3).84C22 = C62.111C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).84C2^2 | 288,617 |
(C6×Dic3).85C22 = C62.112C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).85C2^2 | 288,618 |
(C6×Dic3).86C22 = C62⋊7D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).86C2^2 | 288,628 |
(C6×Dic3).87C22 = C3×C12⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).87C2^2 | 288,640 |
(C6×Dic3).88C22 = C3×C12.6Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).88C2^2 | 288,641 |
(C6×Dic3).89C22 = C3×C42⋊7S3 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).89C2^2 | 288,646 |
(C6×Dic3).90C22 = C3×C42⋊3S3 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).90C2^2 | 288,647 |
(C6×Dic3).91C22 = C3×Dic3.D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).91C2^2 | 288,649 |
(C6×Dic3).92C22 = C3×C23.8D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).92C2^2 | 288,650 |
(C6×Dic3).93C22 = C3×C23.9D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).93C2^2 | 288,654 |
(C6×Dic3).94C22 = C3×Dic3⋊D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).94C2^2 | 288,655 |
(C6×Dic3).95C22 = C3×C12⋊Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).95C2^2 | 288,659 |
(C6×Dic3).96C22 = C3×Dic3.Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).96C2^2 | 288,660 |
(C6×Dic3).97C22 = C3×C12.48D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).97C2^2 | 288,695 |
(C6×Dic3).98C22 = C3×C23.28D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).98C2^2 | 288,700 |
(C6×Dic3).99C22 = C3×C12⋊7D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).99C2^2 | 288,701 |
(C6×Dic3).100C22 = C3×C23.12D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).100C2^2 | 288,707 |
(C6×Dic3).101C22 = C3×D6⋊3D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).101C2^2 | 288,709 |
(C6×Dic3).102C22 = C3×Dic3⋊Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).102C2^2 | 288,715 |
(C6×Dic3).103C22 = C3×D6⋊3Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).103C2^2 | 288,717 |
(C6×Dic3).104C22 = C3×Q8○D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic3 | 48 | 4 | (C6xDic3).104C2^2 | 288,1000 |
(C6×Dic3).105C22 = Dic3×Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).105C2^2 | 288,490 |
(C6×Dic3).106C22 = C62.20C23 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).106C2^2 | 288,498 |
(C6×Dic3).107C22 = C12.27D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).107C2^2 | 288,508 |
(C6×Dic3).108C22 = C12.28D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).108C2^2 | 288,512 |
(C6×Dic3).109C22 = C62.37C23 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).109C2^2 | 288,515 |
(C6×Dic3).110C22 = C62.44C23 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).110C2^2 | 288,522 |
(C6×Dic3).111C22 = Dic3×D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).111C2^2 | 288,540 |
(C6×Dic3).112C22 = C4×D6⋊S3 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).112C2^2 | 288,549 |
(C6×Dic3).113C22 = C4×C3⋊D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).113C2^2 | 288,551 |
(C6×Dic3).114C22 = C62.75C23 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).114C2^2 | 288,553 |
(C6×Dic3).115C22 = D6⋊2D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).115C2^2 | 288,556 |
(C6×Dic3).116C22 = C4×C32⋊2Q8 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).116C2^2 | 288,565 |
(C6×Dic3).117C22 = C62.56D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).117C2^2 | 288,609 |
(C6×Dic3).118C22 = C2×C62.C22 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).118C2^2 | 288,615 |
(C6×Dic3).119C22 = Dic3×C3⋊D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).119C2^2 | 288,620 |
(C6×Dic3).120C22 = C12×D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).120C2^2 | 288,644 |
(C6×Dic3).121C22 = C3×Dic3⋊4D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).121C2^2 | 288,652 |
(C6×Dic3).122C22 = C3×C23.11D6 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).122C2^2 | 288,656 |
(C6×Dic3).123C22 = C3×C23.21D6 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).123C2^2 | 288,657 |
(C6×Dic3).124C22 = C3×C4.Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).124C2^2 | 288,661 |
(C6×Dic3).125C22 = C3×S3×C4⋊C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).125C2^2 | 288,662 |
(C6×Dic3).126C22 = C3×C4⋊C4⋊7S3 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).126C2^2 | 288,663 |
(C6×Dic3).127C22 = C3×Dic3⋊5D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).127C2^2 | 288,664 |
(C6×Dic3).128C22 = C3×D6.D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).128C2^2 | 288,665 |
(C6×Dic3).129C22 = C3×C12⋊D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).129C2^2 | 288,666 |
(C6×Dic3).130C22 = C3×C4.D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).130C2^2 | 288,668 |
(C6×Dic3).131C22 = C3×C4⋊C4⋊S3 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).131C2^2 | 288,669 |
(C6×Dic3).132C22 = C6×Dic3⋊C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).132C2^2 | 288,694 |
(C6×Dic3).133C22 = C6×C4⋊Dic3 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).133C2^2 | 288,696 |
(C6×Dic3).134C22 = C3×C23.26D6 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).134C2^2 | 288,697 |
(C6×Dic3).135C22 = C12×C3⋊D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).135C2^2 | 288,699 |
(C6×Dic3).136C22 = C3×D4×Dic3 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).136C2^2 | 288,705 |
(C6×Dic3).137C22 = C3×C23.23D6 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).137C2^2 | 288,706 |
(C6×Dic3).138C22 = C3×C23.14D6 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).138C2^2 | 288,710 |
(C6×Dic3).139C22 = C3×Q8×Dic3 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).139C2^2 | 288,716 |
(C6×Dic3).140C22 = C3×C12.23D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).140C2^2 | 288,718 |
(C6×Dic3).141C22 = C62.25C23 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).141C2^2 | 288,503 |
(C6×Dic3).142C22 = Dic3⋊Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).142C2^2 | 288,514 |
(C6×Dic3).143C22 = C12⋊D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).143C2^2 | 288,559 |
(C6×Dic3).144C22 = C62.97C23 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).144C2^2 | 288,603 |
(C6×Dic3).145C22 = C62⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).145C2^2 | 288,612 |
(C6×Dic3).146C22 = C2×Dic3⋊Dic3 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).146C2^2 | 288,613 |
(C6×Dic3).147C22 = C62⋊6D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).147C2^2 | 288,626 |
(C6×Dic3).148C22 = C2×D6.D6 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).148C2^2 | 288,948 |
(C6×Dic3).149C22 = C22×C32⋊2Q8 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).149C2^2 | 288,975 |
(C6×Dic3).150C22 = Dic3⋊6Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).150C2^2 | 288,492 |
(C6×Dic3).151C22 = C4×S3×Dic3 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).151C2^2 | 288,523 |
(C6×Dic3).152C22 = C62.49C23 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).152C2^2 | 288,527 |
(C6×Dic3).153C22 = Dic3⋊4D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).153C2^2 | 288,528 |
(C6×Dic3).154C22 = C4×C6.D6 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).154C2^2 | 288,530 |
(C6×Dic3).155C22 = C2×Dic32 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).155C2^2 | 288,602 |
(C6×Dic3).156C22 = C2×D12⋊5S3 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).156C2^2 | 288,943 |
(C6×Dic3).157C22 = C12×Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).157C2^2 | 288,639 |
(C6×Dic3).158C22 = C3×C42⋊2S3 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).158C2^2 | 288,643 |
(C6×Dic3).159C22 = C3×Dic6⋊C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).159C2^2 | 288,658 |
(C6×Dic3).160C22 = C3×D6⋊Q8 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).160C2^2 | 288,667 |
(C6×Dic3).161C22 = C3×C12⋊3D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).161C2^2 | 288,711 |
(C6×Dic3).162C22 = C2×C6×Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).162C2^2 | 288,988 |
(C6×Dic3).163C22 = C6×C4○D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 48 | | (C6xDic3).163C2^2 | 288,991 |
(C6×Dic3).164C22 = S3×C6×Q8 | φ: C22/C2 → C2 ⊆ Out C6×Dic3 | 96 | | (C6xDic3).164C2^2 | 288,995 |
(C6×Dic3).165C22 = S3×C4×C12 | φ: trivial image | 96 | | (C6xDic3).165C2^2 | 288,642 |
(C6×Dic3).166C22 = C3×C23.16D6 | φ: trivial image | 48 | | (C6xDic3).166C2^2 | 288,648 |
(C6×Dic3).167C22 = Dic3×C2×C12 | φ: trivial image | 96 | | (C6xDic3).167C2^2 | 288,693 |
(C6×Dic3).168C22 = C6×Q8⋊3S3 | φ: trivial image | 96 | | (C6xDic3).168C2^2 | 288,996 |